펭귄 (@babybluecream)
2025-12-27 | ❤️ 3710 | 🔁 1686
인공지능을 배우려고 시간을 낭비하지 마세요. 📘📚
제가 이미 다 해 드렸어요.
단 하나의 목록으로. 혼란은 전혀 없고. 군더더기도 없다.
📹 동영상:
-
LLM 소개: https://lnkd.in/dMqbaZdK
-
LLM 학위 취득 과정 (초기 단계): https://lnkd.in/dYYwEhYy
-
에이전트형 AI 개요(스탠포드): https://lnkd.in/dArmMt2i
-
에이전트 구축 및 평가: https://lnkd.in/dBWd2W8u
-
효과적인 에이전트 구축: https://lnkd.in/dHfdebqw
-
MCP를 사용하는 건축 에이전트: https://lnkd.in/dXuNHrRJ
-
에이전트를 처음부터 구축하기: https://lnkd.in/da3ANw3w
-
Philo 에이전트: https://lnkd.in/dq-BfZE5
🗂️ 저장소
-
GenAI 에이전트: https://lnkd.in/d3UDtwwv
-
마이크로소프트의 초보자를 위한 AI 에이전트: https://lnkd.in/dHvTmJnv
-
신속 엔지니어링 가이드: https://lnkd.in/gJjGbxQr
-
대규모 언어 모델 실습: https://lnkd.in/dxaVF86w
-
초보자를 위한 AI 에이전트: https://lnkd.in/dHvTmJnv
-
GenAI 에이전트 https://lnkd.in/dEt72MEy
-
ML로 제작됨: https://lnkd.in/d2dMACMj
-
실습 중심의 AI 엔지니어링: https://lnkd.in/dgQtRyk7
-
멋진 생성형 AI 가이드: https://lnkd.in/dJ8gxp3a
-
머신러닝 시스템 설계: https://lnkd.in/dEx8sQJK
-
마이크로소프트의 초보자를 위한 머신 러닝: https://lnkd.in/dBj3BAEY
-
LLM 과정: https://lnkd.in/diZgGACG
🗺️ 가이드
-
Google 에이전트 백서: https://lnkd.in/gFvCfbSN
-
Google 에이전트 컴패니언: https://lnkd.in/gfmCrgAH
-
인류학에 의한 효과적인 에이전트 구축: https://lnkd.in/gRWKANS4 .
-
클로드 코드의 에이전트 코딩 모범 사례: https://lnkd.in/gs99zyCf
-
OpenAI의 에이전트 구축을 위한 실용 가이드: https://lnkd.in/guRfXsFK
📚 도서:
-
딥러닝 이해하기: https://lnkd.in/dgcB68Qt
-
LLM을 처음부터 구축하기: https://lnkd.in/g2YGbnWS
-
LLM 엔지니어링 핸드북: https://lnkd.in/gWUT2EXe
-
AI 에이전트: 완벽 가이드 - 니콜 코닉스타인: https://lnkd.in/dJ9wFNMD
-
AI 에이전트를 활용한 애플리케이션 구축 - 마이클 알바다: https://lnkd.in/dSs8srk5
-
MCP를 사용하는 AI 에이전트 - 카일 스트라티스: https://lnkd.in/dR22bEiZ
-
AI 공학: https://lnkd.in/gi-mQcXa
📜 논문
-
생성 에이전트: https://lnkd.in/gsDCUsWm .
-
사고의 연쇄 촉진: https://lnkd.in/gaK5CXzD .
🧑🏫 강좌:
-
HuggingFace의 에이전트 과정: https://lnkd.in/gmTftTXV
-
인류를 포함한 MCP: https://lnkd.in/geffcwdq
-
Pinecone을 이용한 벡터 데이터베이스 구축: https://lnkd.in/gCS4sd7Y
-
임베딩에서 앱까지 벡터 데이터베이스: https://lnkd.in/gm9HR6_2
-
에이전트 메모리: https://lnkd.in/gNFpC542
재공유 ㄱㄱ
🔗 원본 링크
- https://lnkd.in/dMqbaZdK
- https://lnkd.in/dYYwEhYy
- https://lnkd.in/dArmMt2i
- https://lnkd.in/dBWd2W8u
- https://lnkd.in/dHfdebqw
- https://lnkd.in/dXuNHrRJ
- https://lnkd.in/da3ANw3w
- https://lnkd.in/dq-BfZE5
- https://lnkd.in/d3UDtwwv
- https://lnkd.in/dHvTmJnv
- https://lnkd.in/gJjGbxQr
- https://lnkd.in/dxaVF86w
- https://lnkd.in/dHvTmJnv
- https://lnkd.in/dEt72MEy
- https://lnkd.in/d2dMACMj
- https://lnkd.in/dgQtRyk7
- https://lnkd.in/dJ8gxp3a
- https://lnkd.in/dEx8sQJK
- https://lnkd.in/dBj3BAEY
- https://lnkd.in/diZgGACG
- https://lnkd.in/gFvCfbSN
- https://lnkd.in/gfmCrgAH
- https://lnkd.in/gRWKANS4
- https://lnkd.in/gs99zyCf
- https://lnkd.in/guRfXsFK
- https://lnkd.in/dgcB68Qt
- https://lnkd.in/g2YGbnWS
- https://lnkd.in/gWUT2EXe
- https://lnkd.in/dJ9wFNMD
- https://lnkd.in/dSs8srk5
- https://lnkd.in/dR22bEiZ
- https://lnkd.in/gi-mQcXa
- https://lnkd.in/gRBH3ZRq
- https://lnkd.in/gsDCUsWm
- https://lnkd.in/gyzrege6
- https://lnkd.in/gaK5CXzD
- https://lnkd.in/gmTftTXV
- https://lnkd.in/geffcwdq
- https://lnkd.in/gCS4sd7Y
- https://lnkd.in/gm9HR6_2
- https://lnkd.in/gNFpC542
미디어

🔗 Related
- chain-of-view-makes-vision-language-models-move-through-a
- vlas-nowadays-enable-robotic-manipulation-to-perform
- mvinverse-feed-forward-multi-view-inverse-rendering-in
- uc-berkeley-offers-two-free-courses-on-llm-agents-one-at
- claude-cowork-활용-방식이야-개인마다-입맛에-맞게-anthropic에서-제안한-usecases
인용 트윗
Krishna Agrawal (@Krishnasagrawal)
Stop wasting hours trying to learn AI. 📘📚
I have already done it for you.
With one list. Zero confusion. And no fluff
📹 Videos:
LLM Introduction: https://t.co/OLkDaY7H7g
LLMs from Scratch: https://t.co/2N91lxtSh1
Agentic AI Overview (Stanford): https://t.co/4xX3JiNUlm
Building and Evaluating Agents: https://t.co/paoZnUdySm
Building Effective Agents: https://t.co/TICgQVUFCk
Building Agents with MCP: https://t.co/EPKu3G7Fms
Building an Agent from Scratch: https://t.co/U3XSK0Qx85
Philo Agents: https://t.co/wGNERv8TpH
🗂️ Repos
GenAI Agents: https://t.co/mmvbJpOSlG
Microsoft’s AI Agents for Beginners: https://t.co/zQLhaT3Wpl
Prompt Engineering Guide: https://t.co/wYFPPKX4H1
Hands-On Large Language Models: https://t.co/92ZZJh6MXG
AI Agents for Beginners: https://t.co/zQLhaT3Wpl
GenAI Agentshttps://lnkd.in/dEt72MEy
Made with ML: https://t.co/gvzfW6aKnf
Hands-On AI Engineering:https://t.co/DHTvNbpMVk
Awesome Generative AI Guide: https://t.co/jfjbl5CQvA
Designing Machine Learning Systems: https://t.co/KIV2X9uKQs
Machine Learning for Beginners from Microsoft: https://t.co/Gdl4oZxQEY
LLM Course: https://t.co/59QVZqGED0
🗺️ Guides
Google’s Agent Whitepaper: https://t.co/Psy7vqkVR2
Google’s Agent Companion: https://t.co/sdw5mZhsOM
Building Effective Agents by Anthropic: https://t.co/euyR1t8Dg0.
Claude Code Best Agentic Coding practices: https://t.co/psPsyWWMwH
OpenAI’s Practical Guide to Building Agents: https://t.co/67B9XaLolZ
📚Books:
Understanding Deep Learning: https://t.co/j5xz5XfkFL
Building an LLM from Scratch: https://t.co/TX8BJPpxX0
The LLM Engineering Handbook: https://t.co/rSWCiuvZYW
AI Agents: The Definitive Guide - Nicole Koenigstein: https://t.co/m3Tq3vE6Go
Building Applications with AI Agents - Michael Albada: https://t.co/QM4mYlYdWh
AI Agents with MCP - Kyle Stratis: https://t.co/sIqEe430D6
AI Engineering: https://t.co/hs4bN4xFAV
📜 Papers
ReAct: https://t.co/k3tFy7pbvR
Generative Agents: https://t.co/yQp1Tjl94i.
Toolformer: https://t.co/RKBauj9GVX
Chain-of-Thought Prompting: https://t.co/fVqbr68wvt.
🧑🏫 Courses:
HuggingFace’s Agent Course: https://t.co/OYgR6C8HNd
MCP with Anthropic: https://t.co/n5nnFc9DUC
Building Vector Databases with Pinecone: https://t.co/MLhJnfbdGG
Vector Databases from Embeddings to Apps: https://t.co/31zEvnwtfZ
Agent Memory: https://t.co/ldYc6RVmMj
Repost for your network ♻️
